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g)stracl: The aim of this study was to investigate the hypoglycemic potential by in vitro a-amylase
inhibition, the antioxidant and prebiotic activity of a mixture of blueberry pomace hydroalcoholic
extract (BP) and chia seed aqueous extract (CS) in a weight ratio of 5:1 (BCM) for further use as
redient of functional food. BP was preliminary characterized by total phenolic and flavonoid
tent and HPLC analysis, while total carbohydrate content was determined for C5. BCM mi e
ad the ability to inhibit a-amylase activity by 1.36 times hi; compared to BP extrm:t,xga
concentration of 1 mg/mL. The mixture showed better free H radical scavenging activity,
compared to that of individual extracts, With an 1Gs value of 603.12 pg/mL. In vitro testing indi-
cated tjpmgboth serum and colon reaching products of simulated intestinal digestion of BCM pre-
sented @)pmtecﬁve activity against oxidative stress in Caco-2 cell culture and inhibited the reac-
tive oxygen species production. In additiorg colon reaching product of BCM digestion had the
capacity to significantly (p<0.05) stimulate growth of Lactobacillus rhamnosus and Lactobacillus
acidophilus, revealing the prebiotic potential. All these results indicated that the combination of BP
and CS extracts could be further recommended as main ingredient of novel functional food.

Keywords: berry polyphenols; chia polysaccharides; simulated digestion; hypoglycemic activity;
reactive oxygen species; gut microbiota.

1. Introduction

production of berry and grape juice yields a series of by-products, such as seeds,
peel and residual pulp, collectively known as pomace [1-3]. Pomace contains up to
20-30% of the original fruit tissue and it is often used as animal feed, compost, biogas
production or it is discarded as waste. However, pomace of different berries (strawberry,
blueberry, raspberry, blackberry, cranberry) represents a natural source of phenolic ac-
ids, flavonoids, anthocyanins, proanthocyanidins, in different quantiti 1 which could be
valorized as bioactive compounds for functional food with significant positive effects on
human health, due to their antioxidant, anti-inflammatory, antimicrobial and antitumor
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46 activity [4-7].

47 The fruits of Vaccinium myrfillus L. are known as one of the most trusted medicinal
48 herb for treating diabetes [8] and to treat various cardiovascular disorders, including
49 microvascular and macrovglar complications. The blueberry fruits do not present di-
50 rect hypoglycemic action, their constituents could help to improve the integrity of
51 blood vessels reducing their damage, which is associated with diabetes. This action could
52 be attribute anthocyanins, which represent the major component of phenolics, but
53 mainly due o0 the presence of a complex content of bioactive compounds, such as flavo-
54 nols (quercetin, myricetin), mainly h@!cosylated form [9], phenolic acids like abscisic
55 acid, responsible f elioration of the symptoms of type 2 diabetes afteffpral admin-
56 istration, targeting the peroxisome proliferator-activated receptor gamma (FPAR-y) in a
57 similar manner to that of thiazolidinediones class of anti-diabetic drugs [10].

58 Cinchonaig isomers of the flavonolignans, as another bioactive compound present
59 in blueberries has been shown to increase plasma insulin levels in a similar way to
60 glibenclami fter in vitro and in vivo oral administration [11]. Shi et al. (2017) have re-
61 ported that anthocyanins significantly reduced glucose production by 24-74% in H4IIE
62 hepato@ges [12]. However, even though blueberries do not exhibit a direct hypoglycemic
63 action, ge polyphenol-rich extract of blueberry fruits has an inhibitory activity towards
64 the agficosidase enzyme and thus could be useful in controlling type 2 diabetes [13].
65 Also, phenolics compounds might be responsible for the high antioxidant potential re-
66 ported for blueberry [14].

67 Previous studies showed that oral administration of phenolics in mice resulted in
68 several beneficial actions, such as ameliorating the effects of high-fat diet through in vitro
69 inhibition of a-amylase activity [15, 16], preventing insulin resistance by modulation of
70 redox signaling pathways [17] and down-regulation of pro-inflammatory cytokines se-
71 cretion [18]. After ingestion, phenolics have demonstrated prebiotic properties, stimu-
72 lating the metabolism and adhesion of microbiota colonizing the gut [19, 20]. In a simu-
73 lated media mimicking the intestinal environment, they stimulated the probiotics growth
74 and inhibited pathogenic bacteria, interfering with the process of microbial adhesion [21,
75 22].

76 In Romania, blueberries production is continuously growing, being the second
77 largest after strawberry, due to good climate easy implementation of food safety [23]
78 potential for significant economic benefits [24] and a longer harvesting period than in
79 other Central European countries. As a result, blueberry pomace was selected for the
80 present study, in order to provide scientific data on its potential valorization due to bio-
81 active compounds content and biological properties.

82 Other dietary compounds that proved a plethora of health advantages, including on
83 patients with type 2 diabetes [25] are the polysaccharides, despite they were usually
84 considered on a source of energy. Thus, it was shown that grain-derived polysac-
85 charides could mhibit the key digestive enzymes, a-glucosidase and a-amylase, involved
86 in postprandial blood sugar levels [26]. Moreover, polysaccharides have exerted prebiotic
87 activity by stimulating the development of beneficial microorganisms in the digestive
88 system [27, 28]. 73

89 Chia (Salvia hispanica) seeds were selected, m the present study, as a significant
90 source of soluble fiber polysaccharides [29]. Previous experiments in vitro have demon-
91 strated the antioxidant, anti-inflammatory and antidiabetic activity of chia seeds, while in
92 vivo function of the digestive tract was improved after their consumption [29].

93 Numerous bioactive compounds, such as phenolic components and mainly, flavo-
94 noids h as myricetin, kaempferol, quercetin and chlorogenic acid, and polyunsatu-
95 rated fatty acids (PUFAs) like linoleic and a-linolenic acids are present in chia seeds, be-
96 ing responsible for the gglioxidant activity [30, 31]. Chlorogenic acid could lower blood
97 sugar levels, applying geffecfs by hindering the a-glucosidase enzyme in charge of

98 breaking glucose and carbohydrates during digestion [32, 33]. However, the chia seeds
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99 contain high amount of dietary fiber responsible for the decrease of the g( of coronary
100 heart disease a pe 2 diabetes [34, 35].

101 Currently, the use of phenolics in nutraceuticals is limited due to their low bioa-
102 vailability, poor solubility and instability [36, 37]. Present researches aim to develop
103 mixtures of phenolics and other natural bioactive compounds, such as polysaccharides or
104 prokgs, in order to optimize their benefits for the human health [38, 39].

105 this context, the present study aimed to investigate the a-amylase inhibition, an-
106 tioxidant and prebiotic capacity of a mixture of blueberry pomace and chia seed extracts
107 in experimental models in vitro, before and after simulated gastrointestinal digestion, to
108 provide novel ingredients for functional food development.

109 gdaterials and Methods

110 2.1. Materials

111 Blueberry (Vaccinium myrtillus L.) pomace (dry powder of seed in and residual
112 pulp) was obtained by S.C. Santo Raphael srl, Bucharest, Romania, as a by-product of
113 juice production from blueberrig®harvested from the Research Institute for Fruit Grow-
114 ing, Pitesti, Romania, in 2020. Chia (Salvia hispanica L.) seeds with Argentinian origin
115 were purchased from Bi o, Piatra Neamt, Romania.

116 HPLC standards of gallic acid, chlorogenic acid, caffeic acid, p-coumaric acid, fefgfic
117 acid, rutin, luteolin 7-glucoside, kaempferol 3-glucoside, myricetin, resveratrol and
118 quercetin were purchas om Merck (Germany). High purity, thermostable a—amylase
119 g)m Bacillus sp. (3000 L) (E.C. 3.2.1.1) was purchased from Megazyme (Ireland).
120 olin-Ciocalteu reagent, 2,2—diphenyl—]—picrylhmzyl (DPPH), HPLC-grade acetonitrile
121 99.9%, 3,5-dinitrosalicylic add (DNS), acarbose, pepsin from porcine gastric mucosa (E.C.
122 3.4.238 trypsin from porcine pancreas (E.C. 3.4.214), bile salts and other chemical rea-
123 gents of analytical purity were purchased from Sigma-Aldrich (Germany), unless oth-
124 erwise specified. The Caco-2 human int@gfinal epithelial cell line from ECACC (Sig-
125 ma-Aldrich) was used at passage 20. The Elbecca’s Modified Eagle Medium (DMEM),
126 fetal bovine serum (FBS), glutamen non-essential amino acids and a mixture of penicil-
127 lin-streptomycin-neomycin (PSN) were purchased from Sigma-Aldrich (Germany).

128 2.2. Preparation of bioactive extracts and their mixt

129 Blueberry pomace powder was incubated 1n ethanol:water 70:30 (v/v), in a ratio of
130 1:10 (w/v) under magnetic stning, at room temperature, for 24 h. The extract was cen-
131 trifuged at 9000 g, for 20 min and the residue was subjected to a second extraction, in the
132 same conditions. The supernatants were reunited, evaporated in a rotary evaporator
133 (Heidolph, Germany) to obtain a blueberry pomace extract (BP), which was stored in a
134 desiccator, until further analyses.

135 Chia seeds were hydrated in distilled water, in aga of 1:5 (w/v) and occasionally
136 stirred at room femra{ure, for 3 h. Then, polysaccharides extraction was performed in
137 distilled water, in aratio of 1:10 (w/v) in a Soxhlet equipment operated at 100 °C, for 1 h
138 [40]. After filtration, the procedure was repeated using the remaining residue. In order
139 purify the extract, the reunited supe nts were mixed with chilled ethanol solution, in
140 aratio of 1:3 (v/v) and stored at 4 °C. r centrifugation at 9000 g, for 20 min, the puri-
141 fied extract of chia seeds (CS) was washed with distilled water, lyophilized and then,
142 stored in a desiccator, until further analyses.

143 A mixture was prepared by combining BP and CS solutions in a weight 1fio of 5:1
144 (BCM) and stirring on a magnetic plate, at 150 rpm, at room temperature, for 2 h.

145 2.3. Determination of total phenolic content (TPC), fotal flavonoids content (TFC) and total

146 carbohydrate content -

147 TPC of the extracts was determined @ing the Folin-Ciocalteu assay, as previously

148 described [41] with minor modifications. Briefly, a sample volume of 150 uL was mixed
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149 with 750 pL Folin-Ciocalteu reagent and incubated in the dark, for 5 min. Then, 2 mL of
150 sodium carbonate solution (12%, w/w) were added and distilled water to reach 15 mL.
151 The mixture was vortexed and incubated at room temperature, for 30 min. The optical
152 density (OD) was read at 765 nm using a V-650 UV-VIS spectrophotometer (Jasco, Japan).
153 The standard curve was built using different concentrations of gallic acid in the range of
154 0-500 pg/mL. The results were expressed as gallic acid equivalents (GAE) per 100 g dry
155 weight (d.w.).

156 TFC was evaluated by aluminum chloride assay, as previously described [41].
157 Briefly, an extract aliquot (0.5 mL) was mixed with 1.5 mL methanol, 0.1 mL aluminum
158 chloride solution (10%, w/w), 0.1 mL sodium acetate solution (1 M) and 2.8 mL distilled
159 water. The mixture was incubated at room temperature, for 30 min and then the OD was
160 read at 415 nm using a V-650 UV-VIS spectrophotometer (Jasco, Japan). The standard
161 curve was built using quercetin solution in the range of concentrations 0-500 pg/mL. The
162 results were expressed aeroeh'n equivalents (QE) per 100 g d.w.

163 Total carbohydrate content was determined according to AOAC standard [42] by
164 subtracting the content of protein, lipid and ash.

165 2.4. HPLC analysis a

166 HPLC analysis was conducted on an Agilent 1200 HPLC system provided with
167 quaternary pump, degasser, thermostatted autosampler and diode-array detector. BP
168 sample was filtered through reg ated cellulose membranes of 0.22 pm porosity and
169 aliquots (10 uL) were injected on a Zorbax XDB reverse phase column, 5 pum, 4.6 i.d.
170 x 15 (Agilent). The elution was performed using a mobile phase, consisting of sol-
171 vent mM sodiun@fjcetate buffer, pH 3.05) and solvent B (acetonitrile), in the follow-
172 ing linear gradient: 0-30 min, 2-20% B; 30-40 min, 20-30g$; 40-50 min, 30% B; and 50-60
173 min, 30-2% B, as previously described [43]. The peak 1dentification was conducted by
174 comparison of the retention o that of phenolic acid and flavonoid standards. Dif-
175 ferent standard concentrations were used to build the calibration curves for the quanti-
176 ficatiqf®®Qf identified compounds by peak area integration using the Chemstation soft-
177 ware. The results were expressed per 100 g d.w.

178 2.5. getermination of a-amylase activity inhibition

179 The a-amylase activity inhibition was perfornzd according to the protocol of Ap-
180 ostolidis et al. [44] with minor modifications. A Teaction mixture consisting of 50 uL
181 phosphate buffer (1 , pPH 6.8), 10 puL a-amylase (2 U/ml) and 20 pL sample was
182 made in the wells of a 96-well microplate and incubated at f °C, for 20 min. Then, 20 pL
183 of 1% starch solution was added and incubation continueé 37 °C, for 30 min. Then,

184 uL DNS solution was added and the mixture was boiled in'a water bath, for 10 min. The
185 OD of the mixture was read at 540 nm using a Spectrostar Nano microplate reader (BMG
186 Labtech, Germany mixture containing distilled water in place of sample served as
187 con A solution of acarbose, known as a-amylase inhibitor, served as positive control.
188 The a-amylase inhibition was calculated using the following equation:

189 ﬂﬁbiﬁon of a-amylase activity (%) = (ODcontrol - ODsample / ODenirot) x 100 (1)
190 e sample concenfration (mg/mL) that inhibited 50% of the a-amylase activity
191 (ICs0) was determined from the regression curve using Microsoft Excel 2018 software.

192 2.6. Determination of% radical scavenging capacity

193 The free radical scavenging capacity of samples was determined by free DPPH rad-
194 ical inhibition assay, as previously descril [41]. Briefly, the capacity to inhibit free
195 DP adicals was determined by mixing 1.35 mL of 0.25 mM DPPH methanolic solu-
196 tion with 150 pL sample of different concentrations (10-500 pg/mL) and 0.9 mL of 0.1 M

197 Tris-HCl buffer, pH 7.4. Then, the mixtures were incubated in the dark, at room temper-
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198 ature, aﬂr 30 min. The OD was read at 517 nm using a V-650 UV-VIS spectrophotometer
199 (Jasco, Japan). A blan.lB:as obtained by sample replacing with the same volume of buffer.
200 The results were calculated using the following equation:

201 aee DPPH radical inhibition (%) = (ODbiank — ODsample) / ODbiank x 100 (2)

202 rolox, alogue of vitamin E, with known antioxidant activity was used as pos-
203 itive control. The sample concentration (pg/mL) that inhibited 50% free DPPH radicals
204 (ICs0) was determined from the nonlinear regression curve of DPPH inhibition vs. con-
205 centration plot using Microsoft Excel 2018 software.

206 2.7. In vitro simulated gastrointestinal digestion

207 In witro simulated gastrointestinal digestion was performed in two successive steps,
208 as previmy described [45] with minor modifications. First, 2.5 mL sample was incu-
209 bated in a simulated gastricjuice, msisﬁng of 20 mg/mL pepsin solutionin 5 M HCI, pH
210 2, sup@emented with 0.9% NaCl, in a shaking water bath fixed at 90 g and a temperature
211 of 37 °C, for 2 h. At the end of the incubation, the post-gastric digestion product (PG) was
212 cooled on ice and stored at -20 °C. In the second phase, an aliquot of PG sample was
213 further digested i eaker with simulated intestinal medium, consisting of 25 mg/mL
214 trypsin and 30 mg bile salts dissolved in 0.1 M NaHCO:s solution, pH 7.5. A dialysis
215 bag (molecular weight cutoff of 12 kDa) was filled with a solution of 0.1 M NaHCO:, pH
216 7.5 and placed into the beaker radually increase the pH, mimicking the gastrointes-
217 tinal transition. incubation was conducted in the dark, at 37 °C, for 2 h, with con-
218 tinuous stirring. At the end of the process, the solution from the dialysis bag contained
219 the digestion products that can pass the intestine into the serum (PS), while the beaker
220 solution contained the products that go into the colon (PC) following digestion. The
221 samples were immediately frozen, until further analyses. For cell culture experiments, all
222 samples (PG, PS, PC) were sterile filtered through 0.45 ym membranes.

223 2.8. lggpitro cytocompatibility testing by Neutral Red assay

224 guman intestinal epithelial cells from Caco-2 cell lin&re seeded at a density of
225 1x10° cells/mL, in the wells of a 96-well culture plate and cultivated in DMEM supple-
226 mented with 20% FBS, 1% glutamax| non-essential amino acids and 1% PSN antibiotic
227 mixture, in standard conditio f 5% CO:2 humidified atmosphere, at 37 °C, for 24 h.
228 Then, cells were cultivated in fre edium containing different concentrations of di-
229 gested samples (100-1500 pg/mL), In standard conditions, for 24 h.

230 At the end of the incubation period, the cell viability was assessed eutral Red
231 assay, as previously described [46]. Briefly§Fhe cell culture media was replaced witlEf®0
232 uL of 0.005% (w/w) Neutral Red solution and the plate was incubated in the dark, at 37
233 °C, for 3 h. Then, the cells were wa in phosphate buffered saline, fixed and the stain
234 was extracted f the viable cellsig gentle shaking, for 15 min. Untreatﬁells were
235 used as control. Cells treated with 0.ggaM H:O: served as positive control. The OD was
236 read at a wavelength of 540 nm at a Spectrostar Nano microplate reader (BMG Labtech,
237 Germany). The cell viability was calculated using the following equation:

28 Cell viability (%) = (ODsampie / ODeontrol) x 100 (3)

239 2.9. Determination of intracellular r:tive oxygen species (ROS) production by flow cytometry
240 The inBcellular ROS production was determined in the same experimental model
241 of adheremm—z intestinal cells treated with 100 pg/mL digestion products, for 24 h, as
242 described above. Then, the celf#f were oxidative stressed by treatment with 0.05 mM
243 t-butyl hydroperoxide (t-BHP), for 30 min. The intrac@jfilar ROS production was deter-
244 mined by using the cell permeant fluorogenic dye 27,7’-dichlorofluorescein diacetate
245 (DCFH-DA), as previously deqfibed [47]. Briefly, cells were incubated with 10 pM
246 DCFH-DA, for 30 min and the%;ian with free radicals led to the formation of DCF
247 fluorescent product analyzed at a LSR II flow cytometer (Becton Dickinson, Franklin
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Lakes, NJ, USA). Cells incubated in@tune medium served as control. Cells treated with
12 uM ascorbic acid, known as antioxidant agent, served as positive control. The ac-
quired histograms of fluorescence intensity served to calculate the percentage of ROS
production using FACSDiva and Flow]Jo software.

2.10. Determination of the prebiotic effect

The prebiotic effect was evaluated in experimental models in vitro developed using
microbial strains of Lactobacillus rhnmnosg and Lactobacillus acidophilus, as previously
described [48] with minor modifications. Briefly, bacterial cultures were grown in MRS
broth medium@3t 35 °C, for 24 h and the working culture was adjusted at a concentration
of 1x10% CF% to 0.5 McFarland standard. The samples of non-digestible products
(PC) (100 pg/mL) were incubated with microbial suspensions in the wells of a 96-well
microplate, at 35 °C, for 24 h. The absorbance was read at 600 nm using a Sunrise micro-
plate reader (Tecan). The values were proportional to the microbial growth. Untreated
culture served as control.

2.11. Statistical analysis

The results were expressed as mean + standard deviation (SD) from three inde-
pendent experiments (n=3). statistical analysis was performed on each con-
trol-sample or sample-sample pair of interest using two-tailed, paired Student’s f-test
(Microsoft Excel 2018 software). Statistical significant differences were considered at
p<0.05.

3. Results and Discussion
3.1. Characterization of bioactive extracts

77
The results of preliminary analyses of BP and CS extracts are presented in Table 1.

ble 1. Total phenolic, flavonoids and carbohydrates content of blueberry pomace extract (BP) and chia seed extract (CS). The
sults are expressed as mean + SD (n=3).

Sample Totalphenolic content Total flavonoids content Total carbohydrates content
(5 GAE/100 g d.w.) (5 QE/100 g d.w) (/100 g diw.)
BP 30.40 + 1.28 1.89 £0.07 -
CS 3.93+0.15 0.72+0.03 70.78 + 4.41

The results showed that BP had 30.40% TPC and 1.89% TFC. Similar TPC value (28.5
g GAE/100 g d.w.) was previously reported for the blueberry pomace extract prepared in
HCl-methanol solution, at room temperature and the extrac H:50s-methanol solution
at 85 °C [49]. CS contained 70.78% carbohydrates content, as calculated by subtracting the
cont f protein, lipids and ash.

e results of HPLC analysis are presented in Table 2. The data indicated that gallic
and chlorogenic acid were the main identified phenolic acids, while the flavonoids rutin,
quercetin and luteolin 7-glucoside prevailed over the other identified compounds.
Resveratrol was also quantified in BP extract, at a level of 103.43 mg/100 g d.w. A pre-
vious study identified similar composition of the acidified hydroalcoholic extracts of
blueberry pomace [50].

aable 2. HPLC analysis of phenolic compounds in blueberry pomace extract. The results are ex-
pressed as mean = SD (n=3).

Compound Qua
(mg/100 g'd.w.)
Gallic acid 5043.27 = 181.03
Chlorogenic acid 1509.41 +61.37

Caffeic acid 200.60 £9.45
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&oumaric acid 251.85 +8.75
Ferulic acid 118.14 +£5.18
Rutin 609.78 £ 23.26

Luteolin 7-glucoside 262111291
Kaempferol 3-glucoside 161.46 £6.76
Myricetin 17518 £7.22
Resveratrol 103.43 £4.69
Quercetin 31646+ 11.84

3.2, Inhibition of a-amylase activity

Phenolic compounds, such as quercetin, rutin, catechin, procyanidins and tannic
acid, could inhibit a-amylase activity through hydrophobic interaction [49]. In addition,
diet with chia SEE could control the postprandial glycemia and manage the obesity risk
in diabetes [52]. In the present study, the capacity of BCM mixture to inhibit a-amylase
activity was comparatively assessed to both BP and CS individual extracts. The results
are presented in Figure 1.

80
Py . —BP
£ 60 i 1
c x —4—CS
2 50 r
- BCM
E 40
o 30 Acarbose
w
E
g 20
©
s 10
[ T T T 1
0 0.25 0.5 0.75 1
Concentration (mg/mL)
Figure 1. Inhibition of a-amylase activity in the presence of b rry pomace extract (BP), chia

seed extract (CS) and their mixture (BCM). Acarbose served as control. *p<0.05, compared to con-
trol.
The inhibition of a-amylase activity varied In a dose-dependent manner. The mix-

ture presented the highest inhibition of a-amylase activity, close to that of acarbose, a
known inhibitor of a-amylase activity. The mixture had higher value of inhibition than
those of individual extracts, at each tested concentration. The calculated ICs value of
BCM was 0.69 m’m]_, while those of BP and CS were 1.28 and 1.07 mg/mL, respectively.
Acarbose had an ICso value of 0.31 mg/mL. These data indicated that the compounds
from BCM could exert a synergistic action that led to inhibition of a-amylase activity.
Similar activity of different methanolic and aqueous extracts of fruit pomace derived
from grapes, lemon, orange and pineapple was previously reported in the range of 8-28%
a-amylase inhibition [1]. olic compounds, like gallic and chlorogenic acid, acted as
potent antidiabetic agents hibiting a-amylase and a-glucosidase activity in vitro and
in vivo [53, 54]. It was observed that these antioxidant phenolic compounds were found in
significant quantities in BP extract and BCM mixture prepared in the present study. In
addition, previous in silico studies using docking program found novel phenolic inhibi-
tors of a-amylase, such as corilagin, baicalein, quinoline, B-sitosterol, and identified the
amino acids from the active situs of this enzyme involved in hydrophobic and/or hy-
drogen-bond interactions [55]. The mechanism of inhibition was described as a non-
competitive polyphenol-enzyme interaction and, in the case of catechins, good correla-
tion between the affinity towards the enzyme and the inhibitory potential was found [56].
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It was also found that phenolics represented a supportive @atment of type-2 diabetes
and metabolic syndrome [57].

3.3. Free radical scavenging activity

The results of free DPPH radical scavenging activity of BCM and BP, CS individual
extracts are presented in Figure 2.

£ 100 z
g
2 s
>
o 4 _-cs
w60
g BCM
-"S 40 Trolox
==
a
ﬂ 20
2
N : : : .

0 0.25 0.5 0.75 1

Concentration (mg/mL)

Figure 2. Free DPPH radical scavenging activity of blueb pomace extract (BP), chia seed extract
(CS) and their mixture (BCM). Trolox served as control. *p<{1.05, compared to control.

These data showed that BCM ixture presented higher antioxidant activity than
that of individual extracts. Accordingly, lower ICso value (606.12 pg/mL) was calculated
for BCM mixture, compared to that of BP (681.97 pg/mL). CS had a significantly higher
ICs0 value (2248.57 pg/mL), indicating low antioxidant activity and was not further tested
in cell culture experiments. The ICs value @T rolox, used as antioxidant control, was
127.02 pg/mL. The capacity of BCM mixture t0 scavenge free DPPH radicals could be due
to the high phenolic content of BP, in accordance to a previous $fly reporting high
correlation coefficient [49]. This activity was also influenced by the structural properties
of phenolic constituents, such as the number and position of hydroxyl groups or other
substituents [58]. In addition, it was shown that polysaccharides had a pronounced in-
teraction with fruit polyphenols through covalent, hydrogen and hydrophobic bonds
[59], which might increase the antioxidant capacity of such combinations [60].

3.4. In vitro cell cytocompatibility

A two-step gastrointestinal digestion was performed on BCM mixture and PG, PS
and PC products were obtained. The results of in vitro cytocompatibility testing different
concentrations of these products in Caco-2 intestinal cell line are presented in Figure 3.
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ggure 3. The cell viability of Caco-2 cells treated with post-gastric (PG) and post-intestinal (PS, PC)
digcstiom')ducts of blueberry pomace extract (BP) and BCM mixture, for 24 h, assessed by Neu-
tral Red assay. The results were expressed as mean = SD (n=3). *p<0.05, compared to the untreated
cells (control).

The values g cell ility varied in a dose-dependent manner. The PG-BCM had
good cytocompatibility in the range of concentratifiins 100-1000 pg/mL, the cell viability
values being close to that of control cells (100%) a ncentration of 100 pg/mL, and
higher than 80% at concentrations between 400-1000 pig/mL. At 1500 pg/mL, the cell via-
bility was 73.6%, indicating moderate cytocompatibility. PS digestion product of BCM
was also cytocompatible up to 1000 pg/mL (cell viability >80%) and a value of 71.6% was

rded at 1500 pg/mL. PC digestion product of BCM was cytocompatible and had
gues of cell viability higher than 80%, at all tested concentrations. The digestion prod-
ucts of B had similar de of cytocompatibility to that of BCM mixture. Based on these
data, the cytocompatiblegcentraﬁan of 100 pg/mL digestion products was selected for
further experiments in Caco-2 cells.

3.5. Effect on intracellular ROSgagoduction

An experimental model 111 vitro was used to assess the effect of PS and PC digestion
products of BCM mixture on the modulation of intracellular ROS production in oxidative
stressed Caco-2 intestinal cell culture. The hi EPgrams acquired by flow cytometry and
the calculated percentages of ROS production are presented in Figure 4.
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D PS-BCM 41.43+1.56%
E PC-BP 36.41+2.13%
F PC-BCM 34.86+ 1.06
G Ascorbic acid (control) 30.16+2.12°

Figure 4. Quantification of ROS production in oxidative stressed Caco-2 cells (B) treated with 100
ug/mL @testinal digestion products PS-BP (D), PS-BCM (E), PC-BP (F) and PC-BCM (G), per-
formed flow cyt . Untreated cells (A) and cells treated with 12 uM ascorbic acid (C)
served as control. The results are expressed as mean = SD (n=3). *p<0.05, compared to the oxidative
stressed group; ‘p<0.05, compared to ascorbic acid-treated group.

The results indicated that all tested samples had the capacity to gniﬁcantly (p<0.05)
decrease the ROS level, compared to the oxidative stressed cells. It is worth to emphasize
that, in the ca.aof cells treated with PC digestion product of BCM, the ROS level was
diminished at a similar value to that of cells treated with ascorbic acid, a known antiox-
idant agent. An antioxidant capacity was also observed in case of cells treated with
PS-BCM, but the levels of ROS production were slightly higher, compared to that of
PC-BCM digestion product. These results confirmed that the compounds from BCM
mixture could maintain their antioxidant activity after gastrointestinal digestion. The
digestion products of BP presented antioxidant capacity, but at a lower extent than those
of B@ul.

e results were in accordance to a previous study on polyphenolic extracts of
blueberry pomace showing their capacity to inhibit ROS generation in H:0:-treated
keratinocytes [61]. Moreover, pre-treatment of cells with blu y phenolic extract could
protect them from H:0:-induced oxidative stress through the p-38 mitogen-activated
protein kinase metabolic pathway [62]. In a similar study on blackberry phenolic extracts,
it was reported their anti-ROS activity in cultured cells, after simulated gastrointestinal
digestion, a process known to affect their stability and bioavailability in vive [63]. Previ-
ous research reported the beneficial effect of grape polyphenols administration in mice
for lowering the intestinal ROS level [64].
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3.6. Prebiotic effect

The results of Lactobacillus rhamnosus and Lactobacillus acidophilus growth in the
presence of digestion products reaching the colon are shown in Figure 5.

0.7

08 W

05 * * BL. rhamnosus

e

OL. acidophilus

-

0.4 —

]

in

OD at 600 nm

0.3 — H —

0.2 — H —

0.1 H —

0
Control PC-BP PC-BCM

Figure 5. Growth of Lactobacillus rhamnosus and Lactobacillus acidophilus cultivated in@presenoe of
100 pg/mL of digestion products reaching@he colon (PC) of blueberry pomace extract (BP) and
BCM mixture, after 24 h of treatment. The results are expressed as mean + 5D (n=3). *p<0.05, com-
pared to untreated control; *p<0.05, compared to PC-BP.

These data indicated that cell growth of both Lactobacillus rhamnosus and Lactobacillus
acidophilus bacterial strains was superior in the presence of PC-BCM digestion product,
compared to that of untreated control. Thus, the sample has induced a stimulating effect
on the grog—l of each tested strain of Lactobacillus, after 24 hours of treatment. Also, sig-
nificantly (p<0.05) higher values were recorded in the cells treated with PC-BCM, com-
pared to those treated with PC-BP. These results demonstrated that BCM mixture had
better capacity to up-regulate the growth of lactic add bacteria strains. In addition, they
suggested a synergistic action of bioactive compounds from BCM mixture to stimulate
prol:@cs and gut health.

veral in vitro and in vivo studies indicated the bioactivity of berry polyphenols on
balancing between beneficial Bacteroidetes and Firmicutes through decrease of short-chain
fatty acids production [65]. Blueberry anthocyanin extracts nted prebiotic activity
[66], while consumption of a phenolic extract have modulated the gut microbiota of mice,
increasing the relative abundance of Bifidobacteria and revealing anti-obesity effects [67].
Phenolic extracts of elderberry skin were also reported to stimulate the growth of the
probiotic strain of Lactobacillus rhamnosus, being recommended for obtaining functional,
pro-health food [48]. The combination of phenolics angobiotic strains induced signif-
icant beneficial effects on gut motility and microbiota m an in vivo model on Drosophila
and in a simulated model of human gastrointestinal tract, compared to that of each
component, providing novel solutions for chronic metabolic diseases [68]. Moreover, chia
seeds have high nutritional and therapeutic potential, in particular for gut microbiota
due to their chemical composition rich in soluble fiber polysaccharides. Still, there is
scarce scientific literature on the prebiotic effect of chia seed polysaccharides. A recent
study has reported that chia mucilage protected the probiotics encapsulated in a food
film and stimulated their survival increase [69]. Similar studies have reported that oli-
gosaccharidic fractions extracted from grape seeds exerted prebiotic activity towards
Lactobacillus acidophilus, improving in vitro bacterial growth [19].

4. Conclusions

This study has demonstrated the ability of a new mixture of blueberry pomace and
chia seed extracts to inhibit a-amylase activity, suggesting hypoglycemic potential, and
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to scavenge free DPPH radicals. In vitro experimental models have shown that bioactive
compounds from BCM maintained their antioxidant capacity after simulated intestinal
digestion, indicatin@j) potential advantages for their bioavailability and digestive tract
health. Stimulation of lactic acid bacteria growth in the presence of colon reaching diges-
tion products of BCM showed the prebiotic potential. All these bioactivities were exerted
by the mixture of pomace and chia seed extracts at a higher extent than the individual
extracts, suggesting a synergistic action of combined compounds. In conclusion, this new
valuable vegetal mixture is recommended for further testing as ingredient of novel func-
tional food with hypoglycemic, antioxidant and prebiotic properties.
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Abbreviations

BP: blueberry ace extract; CS: chia seed extract; BCM: mixture of BP and CS% in a ratio
of 5:1 (w/w); H: 2,2-diphenyl-1-picrylhydrazyl; DNS: 3,5-dinitrosalicylic acid; EM: Dul-
becco's Modified Eagle M ; FBS: fetal bovine serum; PSN: penicillin-streptomycin-neomycin
mixture; d.w.: dry weight; : total phenolic content; TFC: total flavonoids content; OD: optical
density; GAE: gallic acid equivalents; QE: quercetin equivalents; PG: gastric digestion product; PS:
intestinal digestion product that pass into the seru 'C: intestinal digestion product that go into
the colon; t-BHP: tert-butyl hydroperoxide; : reactive oxygen species; DCFH-DA:
2, 7-dichlorofluorescein diacetate; SD: standard deviation.
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